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Abstract—The use of modal transformations in the traveling 

wave fault locator has difficulties associated with the need to 
calculate the conversion matrix from phase to modal values. This 
calculation requires considering the geometric features of the 
phases of the transmission line. Usually, the calculation of the 
conversion matrix simplifies and considers that the transmission 
line is symmetrical and fully transposed. It allows using well 
known modal transformations: Clarke, Karrenbauer and 
Wedepohl transformations which widely used in traveling wave 
fault locators. However, there is an unresolved issue: which one is 
optimal for traveling wave fault locator and gives the greatest 
accuracy for fault location. 

This article shows that Clarke transformation, Karrenbauer 
transformation, and Wedepohl transformation give identical 
wave characteristics and any of them can be used for fault 
location. 

Keywords—modal transformation, Clarke transformation, 
Karrenbauer transformation, Wedepohl transformation 

I. INTRODUCTION  
Phase values of currents and voltages contain two terms: 

aerial and ground (zero) modes [1]. Because these terms have 
different propagation speeds [2, 3], they arrive at different 
times at the point of installation of a traveling wave fault 
locator. This reduces the accuracy of determining traveling 
wave arrival time from phase values and, therefore, fault 
location.  

To solve this problem wave propagation in transmission 
lines is considered on the basis of decompositions of phase 
values into independent air and ground modes [4]. Each mode 
is characterized by its own attenuation coefficient and wave 
propagation speed. Use of mode with less attenuation 
coefficient in traveling wave fault locator allows increasing 
accuracy of the time of arriving of traveling wave and fault 
location.    To convert phase values to modal values Clarke 
transformation [5]–[8], Karrenbauer transformation [6], [9] and 
Wedepohl transformation [6], [10] is traditionally used in 

modern traveling wave fault locators. The question arises: 
which of them is optimal for traveling wave fault locator?  

II. THE THEORETICAL BASIS OF MODAL TRANSFORMATIONS  

A. Unsymmetrical transmission line 
For the three-wire system shown in fig. 1 using operator 

calculus the telegraph equations are as follows [11], [12]: 
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U  – vector of phase complex voltage 

values; 
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I – vector of phase complex current values; 
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Z  – impedance matrix; 
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Y – admittance matrix; 

p=�+j� – Laplace operator. 
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Fig. 1. Infinitesimal three-phase section of the unsymmetrical transmission line 

Differentiating both sides of equations (1) and (2), 
differential equations with one unknown are obtained: 
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The solution of differential equations (3) and (4) is a 
difficult task because it requires taking into account the mutual 
impedances and admittances of transmission lines [12]. To 
solve this complexity conveniently to consider wave 
propagation in modal coordinates in which signals propagate 
independently of other modes [13]. 

Modal voltages and currents are determined using the 
properties of matrix similarity transformations from the 
equations: 

� ,u m�U T U � ����

� ,i m�I T I � ����

where uT  and iT  - matrices of conversion of modal values 
to phase values. 

Differential equations in modal coordinates are obtained by 
substituting (5) and (6) into (3) and (4) [14]: 
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where uT  and iT  chosen so that matrix products both 
1

u u
�T ZYT  and 1

i i
�T YZT  are diagonal matrices. This eliminates 

the occurrence of mutual influence of modes in the system of 
differential equations (7) and (8). 

As is known from the theorem of diagonalizable matrix 
[12], [15] 1

u u
�T ZYT  and 1

i i
�T YZT  will be diagonal matrices 

only if matrices uT  and iT  consist of eigenvectors of matrices 
ZY  and YZ  respectively. 

Thus, the conversion to modal coordinates comes to the 
definition of eigenvectors of matrices ZY and YZ . 

B. Symmetrical and transposed transmission line  
The problem of definition matrices uT and iT becomes 

simpler if assuming that the transmission line is symmetrical 
and fully transposed as shown in fig. 2. Then 
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Fig. 2. Infinitesimal three-phase section of the symmetrical transmission line 
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Matrices Z  and Y are symmetrical, hence, the result of 
their product will be symmetrical matrix: 
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where ( ) ( ) ( ) 2 ( ) ( )L L pp ppz p Z p Y p Z p Y p� � ; 

( ) ( ) ( ) ( ) ( ) ( ) ( )L pp pp L pp ppm p Z p Y p Z p Y p Z p Y p� � � . 

To determine the eigenvectors of matrices ZY  and YZ , it 
is necessary to determine the eigenvalues � of this matrices: 
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where 1 – square identity matrix whose dimension is equal 
to the dimension of the matrix ZY . 

From (12) the eigenvalues of matrices ZY  and YZ  are 
determined: 
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Find the eigenvector of matrices    and YZ , directly 
following their definition: 
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X – eigenvector, i=1, 2, 0. 

Considering that the eigenvalues 1�  and 2�  are equal, from 
(13) determine the equalities that the elements of eigenvectors 

1X  and 2X  must satisfy:  

� 11 12 13 0;X X X� � � � �����

� 21 22 23 0.X X X� � � � �����

The eigenvalue 0�  corresponds eigenvector with elements:  

� 01 02 03 ,X X X k� � � � �����

where k – arbitrary constant. 

Because k is an arbitrary constant, for easement of 
calculation will accept that k=1. The eigenvector corresponding 
to eigenvalue 0�  denoted by the index “0”, given that it is used 
to calculate the components of zero sequences or ground (zero) 
modes. For other modes, the indices are “1” and “2” because 
they are used to calculate the positive and negative sequences 
or to calculate aerial modes. 

III. COMPARISON OF TRANSFORMATIONS  
Although solutions (14)–(16) have innumerable solutions, 

all of them can be obtained from 

� Clarke transformation 
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Show that there is a linear correlation between the known 
transformations. 

A. Correlation between Clarke transformation and Wedepohl 
transformation  
The rule of conversion from Wedepohl transformation to 

Clarke transformation is defined as 
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and vice versa 
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Conversion matrix from Wedepohl transformation to 
Clarke transformation 
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and conversion matrix from Clarke transformation to 
Wedepohl transformation 
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Because this conversion matrices are diagonal, it can be 
concluded that Clarke and Wedepohl transformations are 
equal, because it is enough linear coefficient for the mode of 
one of the transformations to obtain the mode of other 
transformation. 

Thus, Clark and Wedepohl transformations have a linear 
correlation. 

B. Correlation between Clarke transformation and 
Karrenbauer transformation 
The rule of conversion from Karrenbauer transformation to 

Clarke transformation is defined as 
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and vice versa 
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Conversion matrix from Karrenbauer transformation to Clarke 
transformation 
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and conversion matrix from Clarke transformation to 
Karrenbauer transformation 
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Thus, in order to obtain from the Clark transformation, the 
Karrenbauer transformation, and vice versa it is necessary to 
use a linear combination of aerial modes.  

C. Correlation between Wedepohl transformation and 
Karrenbauer transformation 
The rule of conversion from Karrenbauer transformation to 

Wedepohl transformation is defined as 

,W KW K�T T T �

and vice versa 

.K WK W�T T T �
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Conversion matrix from Karrenbauer transformation to 
Wedepohl transformation 

1

1 1 0
2 2

3 3 0 ,
2 2
0 0 1

KW W K
�


 �� �� 

� 

� 
� � �� 

� 

� 

� 
� �

T T T �

and conversion matrix from Wedepohl transformation to 
Karrenbauer transformation 
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Thus, identically as Clarke transformation, in order to 
obtain from the Clark transformation, the Karrenbauer 
transformation, and vice versa it is necessary to use a linear 
combination of aerial modes.  

Thus, there is a linear correlation between all 
transformations and they do not introduce any special 
advantages to the operating of a traveling wave fault locator. 
Therefore, it makes sense to pay attention to the convenience 
of use one or another transformation in the traveling wave fault 
locator. 

IV. CONCLUSIONS 
Modal transformation allows splitting aerial and ground 

modes existing in phase values. Clarke, Karrenbauer and 
Wedepohl transformations are obtained from modal 
transformation for symmetrical and fully transposed 
transmission lines.    Due to the fact that all of them have a 
linear correlation with each other, the characteristics of the 

traveling waves in all modes formed on the basis of these 
transformations are identical. Therefore, for fault location any 
of them can be used – the result of operating a traveling wave 
fault locator will be the same. 
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